zarankiewicz numbers and bipartite ramsey numbers
Authors
abstract
the zarankiewicz number z(b; s) is the maximum size of a subgraph of kb,b which does not contain ks,s as a subgraph. the two-color bipartite ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of kb,b with two colors contains a ks,s in the rst color or a kt,t in the second color.in this work, we design and exploit a computational method for bounding and computing zarankiewicz numbers. using it, we obtain several new values and bounds on z(b; s) for 3≤s≤6. our approach and new knowledge about z(b; s) permit us to improve some of the results on bipartite ramsey numbers obtained by
similar resources
Zarankiewicz Numbers and Bipartite Ramsey Numbers
The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...
full textBipartite Ramsey numbers and Zarankiewicz numbers
The Zarankiewicz number z(s, m) is the maximum number of edges in a subgraph of K(s, s) that does not contain K(m, m) as a subgraph. The bipartite Ramsey number b(m, n) is the least positive integer b such that if the edges of K(b, b) are coloured with red and blue, then there always exists a blue K(m, m) or a red K(n, n). In this paper we calculate small exact values of z(s, 2) and determine b...
full textOn Some Zarankiewicz Numbers and Bipartite Ramsey Numbers for Quadrilateral
The Zarankiewicz number z(m,n; s, t) is the maximum number of edges in a subgraph of Km,n that does not contain Ks,t as a subgraph. The bipartite Ramsey number b(n1, · · · , nk) is the least positive integer b such that any coloring of the edges of Kb,b with k colors will result in a monochromatic copy of Kni,ni in the i-th color, for some i, 1 ≤ i ≤ k. If ni = m for all i, then we denote this ...
full textBipartite rainbow Ramsey numbers
Let G and H be graphs. A graph with colored edges is said to be monochromatic if all its edges have the same color and rainbow if no two of its edges have the same color. Given two bipartite graphs G1 and G2, the bipartite rainbow ramsey number BRR(G1; G2) is the smallest integer N such that any coloring of the edges of KN;N with any number of colors contains a monochromatic copy of G1 or a rai...
full textHypergraph Packing and Sparse Bipartite Ramsey Numbers
We prove that there exists a constant c such that, for any integer ∆, the Ramsey number of a bipartite graph on n vertices with maximum degree ∆ is less than 2n. A probabilistic argument due to Graham, Rödl and Ruciński implies that this result is essentially sharp, up to the constant c in the exponent. Our proof hinges upon a quantitative form of a hypergraph packing result of Rödl, Ruciński a...
full textThe Bipartite Ramsey Numbers b(C2m;K2,2)
Given bipartite graphs H1 and H2, the bipartite Ramsey number b(H1;H2) is the smallest integer b such that any subgraph G of the complete bipartite graph Kb,b, either G contains a copy of H1 or its complement relative to Kb,b contains a copy of H2. It is known that b(K2,2;K2,2) = 5, b(K2,3;K2,3) = 9, b(K2,4;K2,4) = 14 and b(K3,3;K3,3) = 17. In this paper we study the case H1 being even cycles a...
full textMy Resources
Save resource for easier access later
Journal title:
journal of algorithms and computationجلد ۴۷، شماره ۱، صفحات ۶۳-۷۸
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023